Risk Assessment of Processor-Based Signal & Train Control Systems

RSAC Panel on Risk Assessment

May 14, 2002

John Wreathall

The WreathWood Group
Consultants to Volpe Center

The WreathWood Group Background in Risk Assessment

- Work on risk and reliability modeling in nuclear submarine safety (UK, 1975+)
- PRA studies for 15 nuclear plants, aerospace, chemical & military systems
- NRC reviewers of HRA portions of ~20 Individual Plant Examination (IPE) submittals
- Evaluations of medical, chemical plant, aviation & maritime errors
- Developers of numerous HRA & PRA methods

Fault Trees
Event Trees
FMECAs

What is a Risk Assessment?

PHAS

Event Sequence Diagrams

HAZOPs

Simulation

GO Models

Markov Process

Art

Logic Modeling

Mechanistic Calculations

Structuring the Scenarios

 $\{\langle S_i, \ell_i, X_i \rangle\}_{C}$

Quantification of Uncertainty

Bayesian Thinking

Frequency and Probability
Elicitation of Probability
Collecting and Understanding Evidence
Calculations: Updating and Propagating
Uncertainties

Structure of a Fire Risk Model

Pro's & Con's of Risk Assessment

Pro's

- Common dimension for decisions
- Provides a framework for combining many different types of analyses
- Gives detailed understanding of contribution to risks & how to fix
- Uncertainties, sensitivities can be analyzed
- Scaleable to budget (somewhat)

Con's

- Not all issues can be modeled explicitly
- Methods can be "tricky" for human, organizational contributions
- "You get what you pay for"

Characteristics of a Satisfactory PRA (& HRA) Method

- 1. It is useable for resolving the issue(s) at hand
- 2. It is simple, consistent with the needs of (1)
- 3. It can provide satisfactory explanations for its results
- 4. Its results and explanations are adequately consistent with historical experience within the context of the issues of (1)
- 5. It is capable of withstanding scrutiny and review
- 6. It is capable of being updated or revised with new experience (data or knowledge)

Examples of Risk Analysis Techniques

- Nuclear power plant at power: high consequence/rare events—event tree/fault tree for scenarios, various HRA, simulation for consequences (dispersion and dose)
- Nuclear power plant decay heat: high conseq/rare—phased mission event tree/fault tree, HRA focused on dependencies and context
- Space shuttle: high conseq/rare-phased mission event tree/fault tree
- Chemical weapons destruction facility: med-high conseq/rare—plant operational diagrams, event tree/fault tree for scenarios, various HRA, simulation for consequences (dispersion and dose)
- Electric power plant reliability: low-med conseq/routine—simulation
- Medical misapplication: individual high conseq/occasional—HRA
 focused on organizational factors

Relationship of PRA with Proposed Rule Requirements

- Need to compare safety before & after change in design
- Handles integrated systems view
- Need to document assumptions, including human performance
- Risk-<u>informed</u> regulatory decisionmaking, not risk-<u>based</u>

The End